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I. INTRODUCTION

As a result of theoretical work published by Shannon (1) in 1948 and
continued by numerous other workers, it is now possible to quantitatively
determine the performance of communication systems. Shannon established
a formula which sets a theoretical "standard of excellence" against which
systems with widely different parameiters can be conipared. This formula

is shqwn in Equation 1.

C

» .
SH’Wloga(l‘*ﬁ) | 1

Shannon proved that if sufficiently elaborate coding methods are
used, CSH bits of information per second may be sent through a channel
having W cycles per second bandwidth and an average signal-to-noise power
ratio ;32 with arbitrarily low rate of error. Thié assumes that the noise
power is additive, gaussian, and white over the entire bandwidth W.
Figure 1 shows the system model upon which this formula is based.

In this paper, a cammnication system similar to that shown in
Figure 1 w111 be studied. Several additional restrictions are, however,
placed upon the encoder and decoder. The output power of the encoder
must be substantially confined to a narrow band of frequencies, W,
centered at @ radians per second. Furthermore, it is required that
information shall be conveyed only in the phase of this narrowband
signal. The work proceeds in two steps, basically. First, a formula a-
nalogous to Equation 1 is derived for the more restricted channel here- |

after called the FM or phase modulated channel. Second, a communication
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system has been prcposed for which the performance will be coxhputed.

The proposed communication system is known a priori to be suboptirmnm
in that a superior system can be readily suggested. However, the optimum
system is very much more difficult to actually implement. In the pro-
posed system .each subsystem function, defined only mathematically in this
paper, can be constructed without great difficulty.

Consider an encoder capable of sequentially generating waveforms
xi(t), xj(‘l;,), R xp(‘c.) * * ° in response to properly processed
input information. A1l of these waveforms (of which M™> 1 are available)
are assumed to be of equal time dgration and individually distinct. An
example of such’ an encoder using M = |} is shown in Figure 2. Woodward
(2) has proven that if time stationary gaussian noise is added té the
output of this encoder, no decoder can do bétter than to process the
noisy signal by cross~correlation. This means that all of the M possible
encoder output waveforms must Ee s‘boredA by the decoder and compared with
the noisy received signals. The locally available signal having the
greatest cross-correlation is then assumed to have been the one actually
sent by the encoder. Using this fact, Fano (3) proposed his "Idealized
‘Communication System" shown in Figure 3. This system uses the basic
ideas advanced by Woodward (2).

The proposed commnication system sfudied in thié paper strongly re-
sembles the oné proposed by Fano (3). However, great practical difficul-
ties arise when the decoder is located far from or moving with respect to
the encoder. The principal difficulties arise in attempting to determine

the precise time of arrival and in generating of high frequency waveforms
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" at the decoder. The communication system studied in this paper aftempts
to circumvent these problems while maintaining good performance.

Quite recently a prac‘b;’.cal communication system similar to the one
suggested by Fano (3) was described by Sanders (4). This system employed
digital phase modulation and used a phase locked detection system. Thé
spectrum generateci by such an encoder is not well defined or as narrow as
is possible. It was, nevertheless, well suited to the missile telemetry
application for which it was intended. The detection system, further-
more, becomes useless for wvalues of 32 in the vicinity of unity. The
. proposed system, on the other hand, has a narrow, well defined spectrum
and has no basic detector threshold problem.

In order to prove that communication systems carrying information
only in the phase of narrowband signals can perform at nearly the Shannon
(1) rate, it is now necessary .to deternﬁne CPM/CSH‘ This ratio represents
" the fractional part of the more general Shannon channel capacity which is '

obtainable with phase modulation.



II. CHANNEL CAPACITY FOR PHASE MODULATION

A. Maximum Encoder Entropy

In order to derive the expression for CPM’ steps analogous to those
originally used by Shannon (1) are outlined below.
1. The entropy, H(A) of p[\] must be calculated. The parameter

A will designate encoder output phase hereafter.

H() = = J pIA] log, p[A] dX 2

2., The conditional entropy of p[\|¢] must be calculated. ¢ repre-

sents the inpﬁt signal phaée at the decoder.

Ha0) == [ [ plolplrje] log, plnje] dMe 3

3. Determine the channel capacity Crpye

Cppg = H(A) = H(xl_ ) L

The quantity H(\|¢) is a measure of the uncertainty of A given @. H()\|o)
is completely determined by 52. Therefore, to obtain channel capacity,

H(\) should be maximized subject to the constraint imposed by. Equation 5.

[--}

[ plAar=1 ‘ g

-0

Investigation into Cpy was made by Elachman (5). His work resulted
in aéymptotic .values for very large and very small values of B2. In
this study, a digital computer was used to verify Blachman's asymptotes
and to compute intermediate values, |

H()\), as given by Equation 2 and constrained by Equation 5, may be



maximized using calculus of variations. To do this, solve Equation 6 for
p and substitute the resuiting expression for p into Equation 5. The
range of the variable A may be restricted as in Equation 8 for reasons

shovn in Appendix B.

3(p log_ p)
_.____e__+m§2=o 6
op op :
1+log, p=m ' 7

Therefore p[A] is a constant. Using the constraint imposed by E-
quation 5 leads to

]2;1; ===’pc'[)n]. ' 8

plal

[

-n TAS<T
The maximum value of H()) is therefore
H()\) = log, 2m. 9
By representing the signal function, sz(t) s and the random noise
function, « (t), each as a long sequence of sampling functions (per Ap-
pendix B) the average information per sample point can be determined
using Eqﬁation 4o 1In order to do this, however, it is first necessary to .

obtain H()|e).

Be Channel Capacity

The signal function, s;(t), will be considered to consist of a superpo-

=+

sition of sampling functions with sample points separated by p = = sec-

onds. This is expressed mathematically by



QR S'nf; (t - xu) .
sa(t) = X A——= cos (ot + A) . 10
k=1 m (t - xu) -

Q is taken to be a large integer in Equation 10.
In the same way, the representative noise function (t) can be

represented as

g% sin & (t - kp) ( )
x(t) = cos (0t +p,) e 11
=T 2 (6 - ) on Tk

Bennett (6) shows that the set of amplitude parameters, N, are statisti-
cally independent and their individual probability density function are
Rayleigh distributed. The mean square value of the random variable Nk is
202. The set of parameters P are also independent. The probability

density function for the random variable P is

_1
pO[pk] = '2—).[' s =N ﬁ pkﬁ n ' 12
=0, lpkl >l

The envelope function of Equation 10 varies slowly with time com=
pared to the cos wot term. Thus, very near to any particular sample
point k the function s,(t) is essentially sinusoidal with agmplitude A and
phase }k. In like manner the noise functioﬁ is gpproxiﬁately sinusoidal
with random phase‘pk and amplitude Nk. Through the use of Appendix A the

probability density function for A given ¢ is written as



2
palilel = SBAB) o £ cos (- 0) exp [-p% sind (1 - )]

V2 B cos (A - ¢)
1 12
K exp (- 5—) db 13
- = = 1.

The conditional entropi, H(\l¢), can now be obtained by using E-
quations 8 and 13 in Equation 3.
T N '
H(Mo) = = [ [ p [nIp2lMe] log, pilXr|oldedr 15
-1 -1
The average information transmitted per sample point (or per time
interval y) is therefore
Average information '
per time interval p = H(A) - H()Alg). ' 16
in natural units

Thus the average information per unit time for bandwidth W and

signal-to-noise power ratio 32 is given by

’

nn
Oy = W[Z_Loge 2n + Jé—n f f palr{e] log, pa[rleldrdg. | 17
-1 -7

naturai units per second
Information rafé is more frequently referred to in bits per second.
If logarithms to the base 2 had been used in Equation 17, then channel
capacity would have been measured in bits per second. .

. Information rate

Information rate in 18
in bits per second

= logee natural units per second
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It should be expected that the CPM would be less than‘CSH since the
permissible signals are more restricted and thus more predictable. It

should also be pointed out that C., is based on using a decoder sensitive

ol
only to phase information at sample points %:seconds apart. Such a de-
coder would be far more easily implemented than would one attempting to
derive additional information from the amplitude modulation caused by the
noise at the sample points.

The evaluation of Equation 17 is necessarily done numerically.
Tigure L shows the resulting plot of the ratio CPM/CSH as a function of
Bz. The asymptotic values found by BElachman (5) are also shown. The
behavior of the curve is quite unexpected between these two asymptotic
values. It appears at this point, therefore, that very little sacrifice
has been made by imposing the additional restrictions provided signal-to-
noise ratios of less than about +10 db are used.

The amplitude function A(t) of s,(t) will be only approximately
constant between sample points unlike the‘usual phase modulation envelope
function. This will be investigated in Section III D of this paper.

The remaining portion of this paper describes the theory of oper-
ation and the calculated performancé of a binary phase modulation system.

It represents an attempt to achieve performance superior to con-

ventional amplitude, frequency, and phase modulatibn systems without im-

posing unrealistic equipment requirements.
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ITI. FPROPOSED PHASE MODULATION SYSTEM

A. Block Diagram and Mathematical lModel

The basic function of a commﬁﬁication system is to reduce the un-
certainty to the user 2s to the information output of the source. In
this particular case, a source is postulated which generates binary
information with a constant rate. This approach represents little loss
in generality since a source with time varying information output rate
can make use of a storage facility to maintain constant rate. Further-
more, continuous and discrete data can be converted to binary information
under very general conditions provided suitable fidelity criteria are
specified.

It is assumed that the source and user could commmnicate if tbe com-~
munication system were removed and the two connected directly. This per-
mits the possibility of binary code conversions within source and user to
add redundancy fbr purposes of error correction and detection. The
function of the communication channel proposed herein is simply to
transfer to the user with the greatest possible rapidity, in the
narrowest possible spectrum, with the minimum possible probability of
- error, the binary sequence fed to ité input.

Figure 5 shows the theoretical model being investigated. It repre-
sents an unusual phase modulation system for several reasons. First, the
encoder is a linear device in contrast to usga} practice. Second, the
envelope amplitude is not constant for all values of time. Third, the

cross-correlation perfdrmed upon the demodulated signal, s5(t), is not
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exactly a matched filter problem as might be expected (n.

Figure 5 omits mention of any means for synchronizing the decoder to
the encoder. It will become clear at a later point that this information
is available to the decoder from the structure of the received signals
for n > 2.

The bloék marked impulse train generator performs a coding operation.
The binary input information is divided into sequential groups of length
n. Consider a particular group. The n bits of information contained in
this group are used to select one of 2" sequences of regularly spaced
positive and negative unit impulses. These impulses, which form s,(t),
are positive or negative on the basis of an orthogonal matrix. This
matrix, whose elements are all +1 or -1, is used to code the impulse
train accordingly. The waveform s,(t) is, to an outside observer, an ap~-
parently random sequence of uniformly spaced positive and negative unit.
impulses as a result of this coding procedure.

The pseudorandom sequence of impulses regularly spaced by p seconds
is used to drive the linear filtef Fi(jw). Thelimpulsive response of
this network has been specifically chosen so that each impulse has an
opportunity to control the output phase of s,(t) at a particular instant

in time. At these particular time points, called sample points here-

i

n|A

after, the envelope amplitude is always A but the relative phase A is
radians depending upon the polarity of the corresponding unit impulse.

The narfowband, white, gaussian noise waveform, < (t), is presumed
to occupy the same Bandwidth as the spectrum of the decoder output. It

is simply added to s,(t) to form y(t). -



15

y(t) = sa(t) + x(¢) ' | 19

The phase detector is responsive only to the slowly varying phase of
y(t). As will be defined later, its output is directly proportional to
o(t).

The block markedldecoding integrator estimates which of the o
impulse trains was actually sent. In this paper, a1l of them are con-
sidered a priori eqﬁiprobablé. The time function s;(t) is sampled'at the
2n'1.points 1 seconds apart which represent the unique sample points
mentioned earlier. On the basis of 2" correlators acting upon these 2n-1
samples a decision can be reached as to the most probably transmitted

binary group. This study is principally devoted to determining the rate

of error and information flow at the output of this decision device. .

B. Theory of Encoder Operation

As mentioned earlier, WOOdwérd (2) has shown that cross-correlation.
is the optimum basis for decision concerning known waveforms received
through additive, gaussian noise. However, in this particular problem,
the noise is not gaussian at the output of the phase detector even though
gaussian noise was added to the output of the éncdder. Névertheless, for
values of B> 1 the function py[A|e] is reasonably similar to a gaussian
probability density function. It is, however, virtually impossible to .
devise a matched filter for the proposed system to permit the optimum de-
cision process to be instrumented for the proposed system. As a result
of these considerations, waveforms orthogonal to each other at the sample

points and sample point decoding based on cross-correlation will be em-
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ployed. A code based on Hadamard matrices, "ka, was selected for use (8).
Figure 6a shows a 2 x 2 Hadamard matrix.

Hadamard matrices are orthogonal matrices having as elements +1 or
-1. These matrices have the interesting property that

B B
Hok = ‘ 20
B B

This property shows how to construct a 2k x 2k matrix given a k x k
matrix. Figtire 6b shows its use upon a 2 x 2 matrix. A1l Lk x Lk
Hadamard matrices for k = 1, 2, = - = - 28 are known to exist (8). This
fact may be used for the construction of systems with non-integer values
of n. To construct the code using, for example, n = 3 a L x i Hadamard
matrix and its negative is employed. Each of the eight rows which re-
sults is used as a code symbol for later conversion to an impulse train.
Figure 7 shows the coding correspondence. All of the remaining code
symbéls ‘are orthogonal o any one partic.;:.ular code symbol with the ex-
ception of one which is strictly negative. It is apparent that as n in-
creases the code symbols will become exponentially longer than the binary
sequences they represent. In this way more redundancy is added at the
expense of information rate to decrease the rate of erroneous decision at
the decoder.

Through the use of Equation 20, 2x 2, L x L, 8 x 8, and 16 x 16
Hadamard matrices are readily obtained.. A 12 x 12 matrix is shown in
Figure 8 for completeness j.n low values of matrix o'rder' (9). This 12.x

12 matrix would lead to n =) .58.
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Figure 9 shows an example of s;(t) which would correspond to a typi-
cal binary sequence using the code shown in Figure 7.

The series of positive and negative impulse functions, designated
s,(t), is used to drive a linear network. This network has an impulse
response
sin & (t - 54) cos ot

[ug(t) - vy (t - 200)1. 21
-&(t-Su) wl®) - m )

. £.(8) =

This function is sketched in Figure 10 under the assumption that 0> 'E'

The impulse response shown in Equation 21 is perhaps most easily

realized through the use of a truncated _s_:l;}r:_zc_ function as given by

sin ﬁ- (t - 5p)

p [ul('t) - ul(t - lQL)]. 22
m (t - 51)

?3.(13) =

This more easily realizable impulse response can then be fed to a
balanced modulator operating at angular frequency w_ to obtain £.(¢).

Figure 11 shows a sketch of ff\l(t).

C. Derivation of Spectrum Bandwidth

The impulse response given by Equation 21 represents a finite
portion of the sampling funct:@n discuss'ed. in Appendix B. In order to

| ascertain the output spectrum of the encoder, it is necessary to de-
termine the autocorrelation function of s;(t). The Fourier transform of
the autocorrelation function determines the power density spectrum at the
input of the linear filter F,(jw). The f\mc‘bion Sz(jo) is then availa-

ble. It represents the spectrum of the encoder output.
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The limiting autocorrelation function of s,(t) will be obtained by
temporarily letting each unit impulse be replaced by a rectangular pulse
of width A and height %;-seconds. The function sy(t) thus becomes a
pseudorandom sequence of finite rectangular pulses each having unit area.
Equation 20 shows that if a code is devised in the manner prescribed,
knowledge of the algebraic sign of one code symbol element tells nothing
.about the polarity of any other element; adjacent or otherwise. This
fact is described by

Probability < element (i,j) = +1l element (i,k)= +1,j%k> = %
23
This equation refers to the enlarged 2k x k matrix consisting of a k x k
Hadamard matrix and its negative. Therefore, the autocorrelation

function, defined by

. T
R(T) = 30 3r [ sa(®)sa(t +T)at 2l

T+

of the rectangular pulse function is shown in Figure 12. If the limiting
operation in A is now performed, Equation 25 will give the autocorre-

lation function.
An G R(T) =u (1) 25

The Fourier transform of s,(t) is

S1(j0) = [ s1(t) exp (-jot)dt. 26

The powér density spectrum at the input to Fy(jo) is (10) the

Fourier transform of R(7).

2G| ? = £ Ba(T) exp (=0T )a¥ =1 27
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The limiting Fourier transform of the unit impulse function u( ™
is giver; by |
S, (jw) = 1. ' - 28
Consequently, the ccmplex spectrum
Sz2(jo) = F1(jw)S1(ju) = F1(jo). 29

The function Fj(jw) is obtained by use of Equations 21 and 30.

Fy(jo) = J £2(t) exp (-jut)dt 30

Equation 30 may be evaluated by using several properties of Fourier
transforms. First, change the wvariable t to
T =1 -5 31

Upon substituting Equation 31 into Equation 30, Fl(jm) becomes
) - .
Fy (jo) = exp (-j5mu) f £2 & + 5p) exp (-jut)ak. 32
-0

The use' of Equation 21 in Equation 32 leads to

2 e N o
sin i
+ exp (=jo t - joSu)] ——t—
I
[ua(® + 5p) = us® - 5p)] exp (~jet)dat. 33

Equation 33 may be simplified through use of the property of Fourier

transforms given by Equation 3.

[ 26 exp (Jut) exp (=Jut)at = F(3(0 - o))

« Bh
[ £(%) exp (=jwt)at = F(jw)
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Consequently, evaluation of the transform of Equation 33 is basically a

problem of evaluating integral I;(je) as defined by

l::l

t .
—E— [y &+ 5p) - uy(® - 5w)] exp (-jat)dt.
35

This integral, in turn, is considered to be the transform of a product of

Il(J(D) = f

1:1:
d')

functions resulting in the use of complex convolution.

I, (jw) = % p.zf sinvu [uy(o - v + &) -y (0w ~-v - -E)] dv
- 36

The exponential faétors found in Equation 33 will not change the
spectrum magnitude as a function of frequency. The translation property
expressed by Equation 3L means that the complex function shown in E-
quation 36 is actually centered at frequencies o ~ If oy >7 3—, the two
complex spectra which are resbectiv.ely centered at * @, will not signifi-
 cantly overlap. Figure 13 shows the plot of the magnitude of the
spectrum, S,(jw), which results from Equation 33. The integral in E-
quation 36 was evaluated through the use of Si(x) tébles (11).

Figure 13 also shows the spectrum magnitude which is at.tainab]la
using the sampling theory outlined in Appendix B. Apparently the sacri-
i‘ice. made by truncating the sampling function at the I 5u points is not
iarge. The 5y second delay ﬁ.mposed to ensure physical realizability does
not affect the magnitude of the spectrum.

The output function s,(t) is therefore enclosed by an envelope

having a fixed amplitude at sample points which are p seconds apart. In

the next section, ‘Ehe statistical behavior of the envelope armlitude be-
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tween sample points is studied.

D. Encoder Output Envelope Amplitude Probability
Distribution Funection

The impulse response function £ (t) haé a total duration of 10w
seconds. At any particular instant, the envelope amplitude of s,(t) is
influenced by the polarity of 10 unit impulses. In the binary case being
investigated the summation of the contributions of the 10 sample functions
is purely algebraic. However, the obvious extension of this work to non-
binary phase modulation will require component summatibn on a vectorial
basis. |

Suppose thzt the +1 elements in the 2k x k modified Hadamard matrices

correspond to sample point phases of + %-with respect to sin.mot. In like

s
2

these two phases are maximally separated the rate of decoder error will be

manner, the -1 elements correspond to - < phases at sample points. Since
less than for any other phase change equal to less than n radians. How-
ever, this phasé separation has the unfortunate effect of causing the
envelope to vary quite greatly between sample points. Since only 10 unit
impulses can influence the envelope amplitude at any particular instant,
it is possible to determine its probability distribution function as a
function of location between sample points. This study was conducted
using the random nature of the impulse polarities and the impulse response

210 possible combinations were considered

given by Equation 21. The
equally probable. The 10 impulse functions influencing the amplitude were

then properly weighted. The results are shown in Figure 1h{ The proba-
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bility contours represent the probability that the envelope amplitude
will exceed the relative magnitude shown in terms of A. The value A is

the sample point envelope amplitude.

E. Theory of Decoder Operation

The decoder must base its decisions completely upon the waveform
y(t). In particular, the decisions made every 2n-lu seconds are based

1 sample points corresponding

upon the received signal phase ¢ at the 27~
to a code symbol sent by the encoder. The parameter Bz representing
signal-tb-noise power ratio at the.sample points, will strongly influence
the accuracy with which the decisions can be made.

The noisy signal waveform, y(t), will have a slowly varying phase
lfunction since both the signal, sa(t), and noise, % (t), are narrowband
waveforms. This combination is operated upon by the phase detector as
shown by Figure 5. This detector is assumed responsive to phase only.
Its transfer function is shown in Figure 15. This curve represents the
output voltage or current resulting from an input phase ¢ in the range
-n<$ ¢< 7 radians.

It is, of course, necessary to provide the phase detector with a
reference signal against which it can determine the sample point phase.
This detail has been omitted from Figure 5. However, through the use of
frequency multipliers and phase locked servomechanisms this reference
signal can be provided.

Under noise-free conditions (32 = ®) the output of the phase de-

.~ tector will be an irregular rectangular pulse waveform. The detector
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L
-2

A. At the other extreme, when 52 = 0, the waveform fed out of the de-

output will be at the sample pointé depending upon transmitted phase

tector will be non-~gaussian noise whose probability density function is
pyloln] = 5. - | 37
-1 =9 =7,

The waveform at the -output of the phase detector will be operated
upon by the decoding integrator. This device performs the operation of
cross-correlation in a discrete sense upon the 2n-1 sample points in the
code symbol 5eing decoded. Actually, 2% such cross-correlators simul-
taneously examine each demodulated waveform. Under noiseless conditions,
the output of the correlator corresponding to the code symbol actually
transmitted will be

n=-1 :
2(1'32 E-r ] 38

In all of the work which follows, this outpu§ signal will be designated
- |
The output of the correlator corresponding to the negative of the

actually transmitted code symbol will be called x All other corre-

o
lators corresponding to code symbols orthogonal to x and x, and have
outputs designated as xj, xu, xs ----- xzn. It will be assumed that
) Xh is the negative of xj, etc. The probability density function at theSe
outputs orthogonal to X will all be the same as that for X3-
Obviously the output of x5 is negative to that of X, even under

noisy conditions of operation. For the remaining 2 -2 correlators,

the output signal x; wili, in general, be zero only for noiseless con-
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ditions. This is basically due to the fact that any two orthogonal code
symbols have as many equal as opposite algebraic signs. (See Figure 7,
for example.)

The decoder bases its decision as to which code symbol was most
probably transmitted upon which of the 2™ cross-correlators produces the
largeét positive output signal x. In the next section, equations are de-
rived which describe' the probability density functions on these 2

correlator outputs.

F. Decoder Output Probability Density Functions

The probability density function describing the output of the phase

detector at a sample point for which the transmitted phase A was -’2-‘- is

_a2 B cos (¢ - I
pylo|3) = FRyB) o e F o Eﬁz sin” (o - %):I
V2 cos (9 - 3) »
1 t
T-Z_TI f exp = 5~ dt. 39
-n <o <n

For the simple case when n = 1 there is only one sample point per
code symbol. The probability density function describing the output x
is therefore

@ ] : _
Py [x1;B] = pl[x__,_li]. Lo

1)
The corresponding density function P2 [x23 B] for the output signal

X, is exactly the same except that x in Equation 40 is replaced by Zpe
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) .
P, [x,5B] = pyl-x,|5] W1
Through the use of the sampling theory of Appendix B it is known

that the narrowband noise waveform, o(t), has independent phase values
at time intervals separated by p seconds. Thersfore, in the case of
n = 2, the two probability density functions at the two sample points
correspond to two independent random variables. This permits the density
function describing their sum to be found by convolution (10). Thus for

n = 2, the density function for X is

(2) 2n (1) (1) |
P [x;p] = _{n P, [23Blp, [x; - z3Bldz. 42

-2n le < 2n.

(2)

The function P2

[xz;ﬁ] can be obtained from Equation L2 by re-
placing x by X,

The probability density function for x3 when n = 2 must also be ob-
tained by convolution. Here, however, it should be recalled that one of
the two sample pbinfs tends to be + -g- while the other tends to be - -;—[.
Tile'refore , it may be expected that the two orthogonal outputs will have

zero mean values. The result is

2) 2n (1) (1) .
P [x338] = _é: P, [z38lP, [33 - z3Bldz. ) L3
21 S % < 2n.

For the case of n = 3, four sample points influence the correlator

outputs. The probability density function for x is

(3) hn (2) (2 - . ,
P, [Xlsﬁ] = ]): P [z;B]Pl [x.l - z3Bldz. Lk
- ﬂ ) .
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=hn le < hn.

The function P? )[xz;g] can be obtained from Equation Ll by re-

placing x with ~Xge

The function P3(3 )[xB;B] is obtained by convolution of two previocusly

derived probability density functions as shown in Equation L5.

P§3)[x3;3] - ;ti P{P)(2;p1p (D), - 23p)as ST
~n < % < b
The general formulas are now apparent.
PJ(_n)[xl;B] - {2:11{ P{n—l)[z;B]P{n-l)[xl - 23B]da. L6
=27 "

e X < 2™y,

Pgn) [x,58] = P{n)[-xl;B] ' L7
2n-1n
P{®)[x ;8] = 5@-1 2D (5581057 D, - 2581az. 18
Rl .

These probability density functions will be used in the next section
to obtain the expressions specifying rate of error committed by the de-

coder due to noise interference.
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IV. ERRCR RATE PERFORMANCE OF PROPOSED SYSTEM

The decoder makes a correct decision as to which code symbdl was
actually sent only if X is greater than all other output signals. Obvi-
ously this is impossible if the value of * is negative since in that
event X5 would be positive and therefore greater.

In the case of n = 1, the probability of correct decoding is
P(l)fB] = jﬁ P(l)[ ;8] o | | 16
c S R LSt

For n = 2, recognition must be made of the fact that for correct
decision to be made X must be greater than x3 and xh as well as Xoe

This is properly expressed by
2n * |
g - { P 551 _fﬁ P{® L, splax, pax, . L7

The limits on the inner integral assure that both x3 and xh are less than
% . The lower limit of zero on the outer integral precludes Xy being
greater than X e

When n = 3, three opthogonal code symbol pairs must be considered. -
It is necessary that all of these six outputs be simultaneously less than
X . Equation 48 shows the relation appropriate to the probability of

correct decoding in this instance.
Ln * 3
SUORIEE RO [ﬁ Pl splany  ax, 18

Tt should be recalled here that all of the other orthogonal outputs have

the same probability density as x3 and therefore P§n) [x3 3] may be used
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instead.
The general formula for the probability of correct decision when n
bits per code symbol and a signal-to-noise power ratio 52 is used becomes
‘ n=1
n-1 rx, e -1
SOIP I G TS i Oy 19
c 2 1 %5 x, 3 *35B1ax; dxy -
n-= 1’ 2, ----- .
-~ “The probability of error is designatedABén)[B].
n : n '
B™1p1 = 1 - ) (p] 50

Error rate computations have been made using a digital computef.
This work was done using 12 values of B over n = 1, 2, 3, L4, and 5.

Figure 16 shows the plotted results.
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V. CHANNEL EFFICIENCY OF PROPOSED SYSTEM

The data plotted in Figure 16 mékes it possible to compute the rate
of information flow, qx, through the commmnication system. .To calculate
qx the system will be considered a noisy discrete channel from the
viewpoint of the binary input and output terminals.

The transition probabilities are not easily determined, however.
This difficulty is due to the much greater likelihood of erroneous cheoice
of’x3 « e e Xp than of Xpe Since the orthogonal code symbols all have
zero cross-correlation with the actually transmitted signal, the trah—
sition to x3 S I will be considered equally likely. Be=-
cause of the large negative cross-correlation of the transmitted code
synbol with its negative, x, will be considered as having zero probabili-
ty of occurrence except in the case of n = 1. The transition probabili-

ties to orthogonal code symbols will, therefore, be given by

s s P (n)[;s‘]
Transition probability _ 'E
Yo Xy, = === ¥y 272
Using the noisy, discrete chamnel approach (12) leads to a formula

51

for Cx given by

p(™)(p]
4]

n + Pén)[p]logzPén)[g] + 3én)[3]1og2 s .
2

Cp = znéip.
bits per second.
Figure 17 shows a plot of.qx/CSH. These curves show the relative

efficiency of this communication system as compared to the ideal Shannon
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channel. ~

Figure 18 shows the ratio Qx/CPM' These curves show the extent to
which this system approaches what can be done with purely phase modulated
systenms.

These two curves are discussed in the next section.
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VI. DISCUSSION AND SUMMARY

Basically, the ciata for Figures 17 and 18 are obtained from Figure 16.
These data could actually be presented in numerous additional ways since
there are several interrelated variables. For instance, sample point sig-
nal-to-noise ratio 52, bandwidth W, error rate Py (n)[B.] , information rate
Cx’ and coding parameter n are variables important in the design of this
type of communication system. By way of illustration two examples of sys-
tem designs will be discussed. In both examiales , two systems (system 1
and system 5) will be discussed. System 1 will use n = 1 while systém 5
will employ n = 5. The first example will show how bandwidth W vs. error
rate PE(n)[B] nay be computed while using constant sample point encoder
amplitude A and constant ﬁxfomation rate Cx'

Refer to Figure 16. Note that in order for PE(n)[ﬁ] to be 10-6, {3?
must be 10,4 db for n = 1. In order to transmit information at the same
rate with n = 5, it is necessary to send -];gr times as many sample points
per second. This means that in order to maintain the same rate of flow

of information in system 5 it is necessary to increase the bandwidth by

% over what is needed by system 1. However, if we also assume that the
noise power spéctral density is fixed and independent of frequency the

value of [32 becomes (10.); -~ 5.05) db = 5.35 db for the case of n = 5. Note, |
8

however, that the error rate is less than 10 = in this case. Consequently,
in exchange for the use of more bandwidth an improved error rate is ob-
tained. -

For the second example it will be assumed that system 1 and system 5
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both operate with an error rate of 1O~S. In the case of system 1 the
value of pz mst be 9.4 db. If the same bandwidth is used for both sys-
tems only %3 as much information is carried by system 5. However, now
only a vlaue of 32 = 3.}y db is required. Thus a decrease in transﬁitted
power of 6 db (I} to 1) can be offset by a reduction of information réte
in the ratio of 16 to0 5 while maintaining the same probability of error.
As a result of these two illustrations it is apparent that some op-
portunity for flexibility does exist. However, Figure 17 sho;s that as
the value of B is increased, the efficiency of the channel as given by
Cx/CSH decreases steadily. Therefore, to extend the work begun here it is
logical to work in terms of a larger number of phase positions. For ex~
ample, instead of the binary case considered here where only sample point
phases of :QE radians are allowed, the possibility of four phase'positions

2
(o, :g , and n radians) at the sample points could be considered. Such

2
a system would undoubtedly be more efficient at larger values of B. How=-
ever, it is also clear that an entire continuum in number of phase positions
is needed in order to be able to design a good system for any particular
rangé of B, Efficient codes for this purpose apparently still awaiﬁ dis=-
covery, however.

Figures 17 and 18 do not show plotted values of channel efficiency
for low values of B. These curves were arbitrarily discontinued at points
corresponding to QE(n)[ﬁ] of 8. For values lower than .8 the transition
probability to the code symbol opposite from the one actually transmitted
probably becomes quite important. No computer evaluations were made in

this regard because of the relative importance of operation under such con-

ditions.
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Figure L shows the channel capacity of a phase modulation system in
terms of the familiar Shannon capacity. This curve shows +that in the range
of values of 52 near O db very efficient phase modulation communication
systems are possible. The Blachman asymptote for low values of B was con=-
firmed by the computer. evaluation of Equation 17. The asymptote predicted
for high values of B also appears to be cor;'ect.' The approach to the as-
ymptote was much slower than aﬁticipated intuitively,

Over a limited range of B, this system is quite efficient in terms of
Shammon's channel capacity as shown by Figﬁre 17. However, many situations
arise in which error rate, ndt channel efficiency, are most desirable. In
such cases, reference musf be made to Figure 16 for comparison of this sys-
tem with others.

One undesirable characteristic of the binary phase modulation system
proposed is the power handling capacity required by the output stage of
the encoder. Figure 1), shows that approximately twice sample point ampli-
tude should nof seriously overload the encoder power énplifier. Conven~
tional phase modulation systems do not have this px:oblem since their oﬁt-
put envelopes do not vary with time. The difficulty which arises in this
| binary system is basically due to the algebraic addition of the contribu-~
tions oi‘ the 10 sampling functions which govern the envelope ‘amplitude at
any given instant. If, instead, more phase positions. at the sample points
were used, the combination of contributioné would be done on the basis of
vectorial -addition and thus much less likely to produce high envelope
peaks.

The initial goal of confining the output spectrum of the decoder has

been substantially accomplished. The impulse response required by Equation



Lli=16

21 may be difficult to synthesize. However, it does appear that the
spectrum conservation resulting in such an approach might make some ef-
fort in this regard worthwhile.

Anotheé goal which this system was intended to achieve was simple
decoder synchronization. TFigure 5 siiows no provision for this problem
since it is expected to be a relatively minor problem. Use could be made
of the 2" cross-correlators already required by the decoder. Several syn-
chronizing systems which depend upon the autocorrelation function being
maximum with zero displacement would use these cross-correlators to adjust
the frequency and phase of a stable oscillator at the decoder to properly
operate the decoder decision device. In contrast, cross-correlation per-
formed on the incoming waveform y (i) would be quite cumbersome since at
least 2n-1 phase modulators resembling the encoder would be necessary to
check the cross correlation with all possible input sequences.

The extent to which the mathematical model proposed in this paper
approaches what is physically realizable remains to be determined. It
appears possible to construct relatively simple devices to meet all system

~

requirements, however.
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VIII. SYMBOL DEFINITIONS

The mathematical symbol listing given below is not complete. It

does, however, tabulate the principal ones used.

A

Pl
Pl[q)l 1]

2™ ]

Sample point envelope amplitude of signal
function. Defined by Equation 10.

Capacity of phase modulated channel. Given
by Equation 17.

Capacity of commnication channel using
Shannon's conditions. Given by Equation 1.

Information rate for proposed phase modu-
lation system. Given by Equation 52.

Complex transfer function of linear filter
used in proposed communication system. See
Equation 30.

Impulse response of linear filter used in
proposed communication system. Defined by
Equation 21.

A k x k Hadamard matrix. See Equation 20
and Figure 6.

Entropy of variable . Defined by Equation 2.

Number of bits required to select one code
symbol at the encoder. '

Envelope amplitude at the kth sample point in
the noise waveform (t). Defined by
Equation 11.

Probability density function of random varia-
ble A. Defined by Equation 12.

Conditional probability density function of
variable A given ¢. Defined by Equation 13.

Probability of correct decoding of code symbol
carrying n bits with signal-to-noise ratio 52.
Defined by Equation L9.



(n)r .
Pjn [73 58]

R(T)
s, (t)
S, (Jo)
s,(t)

SB(t)

x3 « e o o x2n

y(t)

X (t)

L9

Probability density function at output of jth
correlator. The code symbol carries n bits
and the si 1-to-no:1.se rat.n.o is B2. See
Equations Ena L7, and k8.

Autocorrelation function of sl(t). Defined by
Equation 2k.

Impulse train waveform entering linear filter
of encoder. See Figure 9.

Complex spectrum at the output of the encoder.
See Figure 13.

Time domain waveform at the output of the
encoder. See Equation 10.

Time domain waveform at the output of the
phase detector of the decoder.

Time in seconds.

Unit impulse function having infinite positive
pulse with zero width and unit area occurring
at t = 0.

Unit step function having unit magnitude for
all t+ > 0 and zero magnitude for all t< O.

Owtput signal of decoding integrator output
terminals corresponding to code symbol
actually sent by encoder.

Output signal of decoding integrator output
terminals corresponding to opposite of code
symbol actually sent by encoder.

Output signal of decoding integrator output
terminals corresponding to code symbols
orthogonal to the one actually sent by the
encoder.

Bandwidth of narrowband waveforms in cycles
per second.

Time domain waveform entering decoder. De-
fined by Equation 19.

Time doinain representation of noise waveform.
See Equation 11.
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Sample point signal-to-noise power ratio. See
Equation 1l.

Phase of encoder output.

Time interval between unit impulses in sl(t).
See Figure 9.

20'2 is mean square value of Nk‘

Phase of narrowband waveform y(t) at decoder
input.

Mean angular frequency of the band W cycles
per second wide occupied by narrowband
waveforms. '
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X. APFENDIX A

This appendix develops the probébility density function of the re-
sultant phase due to the linear addition of a sine wave and narrowband,
gaussian, white noise. This development folléws closely that of Bennett
6).

Iet (%) be a representative wave of narrowband noise centered at
radian frequency @ .

X(t) = a(t).cos ot - b(t) sin ot Al

The functions a(t) and b(t) are functions of time varying slowly
relative to oscillations at radian frequency w,e A cosine wave Acoscoot'

is added  to ©%(t). The envelope function e(t) is therefore given by

e(t) = \ﬁa(t) + A]2 + b2(t). A2
The phase function is designated by

1l bt
a(t) + A° A3

¢(t) = tan
Consequently, expressions representing the sum of the cosine and noise
waves can be written in the forms shown in Equation Al.

Acosw_t + X(t) = e(t)cos[mot + ¢(t)]

e(t) [-alg%{)-—é cosw b - % sim)o't]

e(t) [cos«pc‘oscoo () - simpsim)ot]

e(t)cos (wot. + ) A~

Tt is shown by Rice (13) that a(t) and b(t) are independent gaussian
random variables. However, the proof of this fact is too lengthy to in-

clude here. Because a(t) and b(t) are independent gaussian variables,
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their joint probability density function may be written as

-32-b2

5 . A5

1
£),b(¢)] =
p,la(t),b(t)] i

In order to change this probability density function to the'(¢,e) coordi-
nate system the respective two dimensional integrals must boﬁh be equal
to unity. This is properly accomplished by letting

dadb = edede. ' . A6

Change of variables to e and ¢ therefore leads to.

2.,.2
p3[e(t),¢(t)] = Eiﬁ% exp - e +A 2%e§os¢ . A7
2no 20

Equation A7 gives the joint probability density function of the narrowband
noise and cosine wave in terms of the envelope function e(t) and the phase
function ¢(t). In order to obtain the probability density fuﬂction of the
phase ¢(t) an integration over the possible range of the envelope function

is made.

-4

pylo] = [ pyle(t), o(t)lae

2 2
exp - e T4 ; Zhecosg ede ' A8
20

1
2

2no

The integral shown in Equation A8 may be evaluated by completing the

square in the exponent. The resulting expression is

2 V§bcos¢ 2
plel = e}gpg:[ﬁ ), BS_;S‘P eXP(-stinch) é{- exp - -12"-— dt .

-n< o< 1.
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In Equation A9

2
= -A—é-. AlO
20 :

B2

Equation A9 is based upon the wave Acoscnot having zero phase. If,
instead, it had a phase angle A the conditional probability density

function is expressed as

' 2
plo|n] = SRR, Booslesd) gyl g5in?(g-1)]

V2Bcos (p-1)
_— exp - %— dt = pl[xlq)]. Al
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" XI. APFENDIX B

This appendix is a brief summary of the theory of uni form sampling
for narrowband waveforms. As in Appendix A, slowly varying envelope and
phase functions are assumed. A real narrowband signal sr(t) is centered
in a narrow band having a bandwidth of 2nW radians per second and center
frequency o  radians per second.

sr(t) = A(t)cos[mot + AE)] | Bl

At this point it is desired to obtain a Fourier series expansion of
| the complex spectrum Sr(jm) related to sr(t). However, this is not
easily done since the positive and negative frequency bands are not ad-
jacent as would be the case if the frequency band began at zero frequency.
To circumvent this difficulty, a complex signal sc(t) is defined.

sc(t) = sr(t) - jsi('b) - ' 4 B2
The real part of sc(t) is sr(t). The imaginary part, however, is chosen
in just such a way that the negative frequency band of s c(1‘,) disappears
(12). -
‘Fou.rier transform pairs will be used for deterniining the complex

spectrum. The various time functions are assumed to satisfy the Dirichlet

@«®

8 (8) = 3= [ 5_(jo)exp(jut)dn

B3

5,(J0) = [ s_(t)exp(-jut)dt

conditions in order to make them transformabie.

The Fourier transform of Equation B2 is
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S, (Je) = 5_(J0) = 35, (). Bl
In order to eliminate the negative frequency band it is necessary
that |
Si(:iw) = J'Sr(jw), w20 BS
| = —er(jco), o < 0.
Sc(jco) may now be expanded in a Fourier series in the angular

frequency ramge o, - W <o S_mo + . In Equation BS the negative sign
. . ko
8, (Ju) kg_w o [-352] BS

which has been included in the exponent for later convenience can be ac-

counted for by proper adjustment of the usual definition of Cpe The last

coo-l-nW 1 K1
% = L 7w Sc(i)ew 138 ]aw =5, (5) § B7
. |

equality of Equation B7 is obtained by means of Equation B3. The complex

time function sc(t) may therefore be expressed by

«©_+nW
o]

5,(t) = o7 wf_ nw{k;, 5o exp [-3 %‘BJ}expuwb)dm B8
) “

Goldman (12) shows by several successive manipulations that Equation B9

is a consequence of Equation B8.

Zw sin LﬂW(t - %)] cos [mo(t - %) - )k]

B9
k
ka-cn- nW(t - _-W-)

5, (8) = by

Equation B9 demonstrates that a narrowband signal is completely
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specified by two numbers (Ak'and lk) at the kth sample point. Sample

4 points are regularly spaced by %.seconds. Ak determines the magnitude of
the S%: X:envelope function éentered at the kth sample point. The enve-
lope function is equal to zero at all other sample points. The value of

Xk determines the carrier phase at the kth sample point.
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