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I. INTRODUCTION 

As a result of theoretical work published by Shannon (l) in 19i|8 and 

continued by numerous other workers, it is now possible to quantitatively 

determine the performance of communication systems. Shannon established 

a formula which sets a theoretical "standard of excellence " against which 

systems with widely different parameters can be compared. This formula 

is shown in Equation 1. 

CSH - W logg (1 + p2) 1 

Shannon proved that if sufficiently elaborate coding methods are 

used, Cgjj bits of information per second may be sent through a channel 

having W cycles per second bandwidth and an average signal-to-noise power 

2 ratio (3 with arbitrarily low rate of error. This assumes that the noise 

power is additive, gaussian, and white over the entire bandwidth ¥. 

Figure 1 shows the system model upon which this formula is based. 

In this paper, a communication system similar to that shown in 

Figure 1 will be studied. Several additional restrictions are, however, 

placed upon the encoder and decoder. The output power of the encoder 

must be substantially confined to a narrow band of frequencies, W, 

centered at <Oq radians per second. Furthermore, it is required that 

information shall be conveyed only in the phase of this narrowband 

signal. The work proceeds in two steps, basically. First, a formula a-

nalogous to Equation 1 is derived for the more restricted channel here­

after called the FM or phase modulated channel. Second, a communication 
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system has been proposed for which the performance will be computed. 

The proposed communication system is known a priori to be suboptiraum 

in that a superior system can be readily suggested. However, the optimum 

system is very much more difficult to actually implement. In the pro­

posed system each subsystem function, defined only mathematically in this 

paper, can be constructed without great difficulty. 

Consider an encoder capable of sequentially generating waveforms 

x^(t), Xj(t), Xp(t) in response to properly processed 

input information. All of these waveforms (of which M"> 1 are available) 

are assumed to be of equal time duration and individually distinct. An 

example of such an encoder using M = I4. is shown in Figure 2. Woodward 

(2) has proven that if time stationary gaussian noise is added to the 

output of this encoder, no decoder can do better than to process the 

noisy signal by cross-correlation. This means that all of the M possible 

encoder output waveforms must be stored by the decoder and compared with 

the noisy received signals. The locally available signal having the 

greatest cross-correlation is then assumed to have been the one actually 

sent by the encoder. Using this fact, Fano (3) proposed his "Idealized 

Communication System" shown in Figure 3 • This system uses the basic 

ideas advanced by Woodward (2). 

The proposed communication system studied in this paper strongly re­

sembles the one proposed by Fano (3). However, great practical difficul­

ties arise when the decoder is located far from or moving with respect to 

the encoder. The principal difficulties arise in attempting to determine 

the precise time of arrival and in generating of high frequency waveforms 



www.manaraa.com

Transmitter Receiver 

Storage 

Time - T 
i u 

T 

xi(t) 

Input 
intelligence 

Noise 

n(t) 

y(t) 

Probability 
computers 

I —7T\ 1 

x2(t) 

Decoder 

J 
Output 

intelligence 

Storage 

Same 
waves 
as at 
transmitter 

V1' 

Figure 3» Fano's "Idealized Communication System" 



www.manaraa.com

5 

at the decoder. The communication system studied in this paper attempts 

to circumvent these problems -while maintaining good performance. 

Quite recently a practical communication system similar to the one 

suggested by Fano (3) was described by Sanders (10. This system employed 

digital phase modulation and used a phase locked detection system. The 

spectrum generated by such an encoder is not well defined or as narrow as 

is possible. It was, nevertheless, well suited to the missile telemetry 

application for which it was intended. The detection system, further-

2 more, becomes useless for values of p in the vicinity of unity. The 

proposed system, on the other hand, has a narrow, well defined spectrum 

and has no basic detector threshold problem. 

In order to prove that communication systems carrying information 

only in the phase of narrowband signals can perform at nearly the Shannon 

(l) rate, it is now necessary.to determine Cp^/Cg^. This ratio represents 

the fractional part of the more general Shannon channel capacity which is 

obtainable with phase modulation. 
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H. CHANNEL CAPACITY FOR PHASE MODULATION 

A. Maximum Encoder Entropy 

In order to derive the expression for C_^, steps analogous to those 

originally used by Shannon (l) are outlined below. 

1. The entropy, H(\) of p[\] must be calculated. The parameter 

X will designate encoder output phase hereafter. 

H(X) » - f p[X] log p[X] dX < 
e 

2. The conditional entropy of p[X| <p] must be calculated, (p repre­

sents the input signal phase at the decoder. 

H(X <p) = - / / p[<p]p[X|<p] log p[X|<p] dMcp 

3. Determine the channel capacity Cp^. 

CPM = H(X) - H(x| q>) It 

The quantity H(x|<p) is a measure of the uncertainty of X given <p. H(X|<p) 

2 is completely determined by p . Therefore, to obtain channel capacity, 

H(X) should be maximized subject to the constraint imposed by Equation 5* 

CO 

/ p[X]dX = 1 $ 
—CO 

Investigation into C^ was made by HLachman (5). His work resulted 

2 in asymptotic values for very large and very small values of J3 . In 

this study, a digital computer was used to verify Blachman's asymptotes 

and to compute intermediate values. 

H(X), as given by Equation 2 and constrained by Equation 5, may be 
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maximized using calculus of variations. To do this, solve Equation 6 for 

p and substitute the resulting expression for p into Equation f>. The 

range of the variable X may be restricted as in Equation 8 for reasons 

shown in Appendix B. 

d(p logQ p) 
+ m |2. = 0 6 

dp dp 

1 + loge P = m 7 

Therefore p[X] is a constant. Using the constraint imposed by E-

quation 5 leads to 

PtX] = » PQ[X], 8 

-n — X — n 

The maximum value of H(X) is therefore 

H(X) = loge 2n. 9 

Ely representing the signal function, s (t), and the random noise 
2 

function, °i (t), each as a long sequence of sampling functions (per Ap­

pendix B) the average information per sample point can be determined 

using Equation In order to do this, however, it is first necessary to 

obtain H(X|<p). 

B. Channel Capacity 

The signal function, s2(t), will be considered to consist of a superpo­

sition of sampling functions with sample points separated by p. = g sec­

onds. This is expressed mathematically by 
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Q sin 77 (t - kn) 
s2(t) = H A —_ •- cos (œ t + X ) . 10 

k=l 2 (t -kp.) " ' 

Q is taken to be a large integer in Equation 10. 

In the sane way, the representative noise function (t) can be 

represented as 

Q sin — (t - kn) 
°f(t) = 2Î M ——^ cos (co t + p ) . 11 

k=l k T; (t - kn) 0 K 

Bennett (6) shov/s that the set of amplitude parameters, are statisti­

cally independent and their individual probability density function are 

Rayleigh distributed. The mean square value of the random variable is 

p 
2a . The set of parameters are also independent. The probability 

density function for the random variable is 

PotPk1 - k ' -* S pk - * 12 

- 0, |Pk| >*. 

The envelope function of Equation 10 varies slowly with time com­

pared to the cos coQt term. Thus, very near to any particular sample 

point k the function s2(t) is essentially sinusoidal with amplitude A and 

phase In like manner the noise function is approximately sinusoidal 

with random phase p^ and amplitude N^. Through the use of Appendix A the 

probability density function for X given <p is written as 
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2 
Pi[X|<p] = ) + !=• COS (X - <p) exp [-p2 sin2 (X - <p)] 

V2* p cos (X - <p) 2 

/ exp (_ Y") dt 13 

••00 

-n — X — n. 

A, p, and CT are related by 

P2 - A' ^ 
2a 

The conditional entropy, H(X|cp), can noif be obtained by using E-

quations 8 and 13 in Equation 3» 

n n 
H(x|cp) = - J J p0[x]pi[x|q>] loge pz[X|q>]d(pdX 15 

-n -n 

The average information transmitted per sample point (or per time 

interval y.) is therefore 

Average information 
per time interval jx = H(X) - H(X|cp). 16 
in natural units 

Thus the average information per unit time for bandwidth ¥ and 

2 signal-to-noise power ratio p is given by 
/ 

n n 

Cflt = w|loge 2it + j J PxCxjcp] loge Pi[X|<p]dXdc^. 17 
-n -n 

natural units per second 

Information rate is more frequently referred to in bits per second. 

If logarithms to the base 2 had been used in Equation 17, then channel 

capacity would have been measured in bits per second. 

Information rate = ̂  e Information rate in , g 
in bits per second natural units per second 
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It should be expected that the would be less than Cg^ since the 

permissible signals are more restricted and thus more predictable. It 

should also be pointed out that Cp.^ is based on using a decoder sensitive 

only to phase information at sample points ̂  seconds apart. Such a de­

coder would be far more easily implemented than would one attempting to 

derive additional information from the amplitude modulation caused by the 

noise at the sample points. 

The evaluation of Equation 17 is necessarily done numerically. 

Figure It shows the resulting plot of the ratio O^/Cgy as a function of 

The asymptotic values found by ELachman (5) are also shown. The 

behavior of the curve is quite unexpected between these two asymptotic 

values. It appears at this point, therefore, that very little sacrifice 

has been made by imposing the additional restrictions provided signal-to-

noise ratios of less than about +10 db are used. 

The amplitude function A(t) of s2(t) will be only approximately 

constant between sample points unlike the usual phase modulation envelope 

function. This will be investigated in Section III D of this paper. 

The remaining portion of this paper describes the theory of oper­

ation and the calculated performance of a binary phase modulation system. 

It represents an attempt to achieve performance superior to con­

ventional amplitude, frequency, and phase modulation systems without im­

posing unrealistic equipment requirements. 
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III. PROPOSED PHASE MODULATION SYSTEM 

A. Block Diagram and Mathematical Model 

The basic function of a communication system is to reduce the un­

certainty to the user as to the information output of the source. In 

this particular case, a source is postulated which generates binary 

information with a constant rate. This approach represents little loss 

in generality since a source with time varying information output rate 

can make use of a storage facility to maintain constant rate. Further­

more, continuous and discrete data can be converted to binary information 

under very general conditions provided suitable fidelity criteria are 

specified. 

It is assumed that the source and user could communicate if the com­

munication system were removed and the two connected directly. This per­

mits the possibility of binary code conversions within source and user to 

add redundancy for purposes of error correction and detection. The 

function of the communication channel proposed herein is simply to 

transfer to the user with the greatest possible rapidity, in the 

narrowest possible spectrum, with the minimum possible probability of 

error, the binary sequence fed to its input. 

Figure 5 shows the theoretical model being investigated. It repre­

sents an unusual phase modulation system for several reasons. First, the 

encoder is a linear device in contrast to usual practice. Second, the 

envelope amplitude is not constant for all values of time. Third, the 

cross-correlation performed upon the demodulated signal, s3(t), is not 
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exactly a matched filter problem as might be expected (?) • 

Figure $ omits mention of any means for synchronizing the decoder to 

the encoder. It will become clear at a later point that this information 

is available to the decoder from the structure of the received signals 

for n > 2. 

The block marked impulse train generator performs a coding operation. 

The binary input information is divided into sequential groups of length 

n. Consider a particular group. The n bits of information contained in 

this group are used to select one of 2n sequences of regularly spaced 

positive and negative unit impulses. These impulses, which form s1(t), 

are positive or negative on the basis of an orthogonal matrix. This 

matrix, whose elements are all +1 or -1, is used to code the impulse 

train accordingly. The waveform s1(t) is, to an outside observer, an ap­

parently random sequence of uniformly spaced positive and negative unit 

impulses as a result of this coding procedure. 

The pseudorandom sequence of impulses regularly spaced by H seconds 

is used to drive the linear filter Fi(jw). The impulsive response of 

this network has been specifically chosen so that each impulse has an 

opportunity to control the output phase of s2(t) at a particular instant 

in time. At these particular time points, called sample points here­

after, the envelope amplitude is always A but the relative phase \ is - ̂  

radians depending upon the polarity of the corresponding unit impulse. 

The narrowband, white, gaussian noise waveform, °((t), is presumed 

to occupy the same bandwidth as the spectrum of the decoder output. It 

is simply added to s2(t) to form y(t). 
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y(t) = s2(t) + Qf(t) .• 19 

The phase detector is responsive only to the slowly varying phase of 

y(t). As will be defined later, its output is directly proportional to 

<p(t). 

The block marked decoding integrator estimates which of the 2n 

impulse trains was actually sent. In this paper, all of them are con­

sidered a priori equiprobable. The time function s3(t) is sampled at the 

2n~^" points (x seconds apart which represent the unique sample points 

mentioned earlier. On the basis of 2n correlators acting upon these 2n~^ 

samples a decision can be reached as to the most probably transmitted 

binary group. This study is principally devoted to determining the rate 

of error and information flow at the output of this decision device. 

B. Theory of Encoder Operation 

As mentioned earlier, Woodward (2) has shown that cross-correlation 

is the optimum basis for decision concerning known waveforms received 

through additive, gaussian noise. However, in this particular problem, 

the noise is not gaussian at the output of the phase detector even though 

gaussian noise was added to the output of the encoder. Nevertheless, for 

values of 0 > 1 the function pi[x|<p] is reasonably similar to a gaussian 

probability density function. It is, however, virtually impossible to 

devise a matched filter for the proposed system to permit the optimum de­

cision process to be instrumented for the proposed system. As a result 

of these considerations, waveforms orthogonal to each other at the sample 

points and sample point decoding based on cross-correlation will be em­
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ployed. A code based 011 Hadamard matrices, H^, was selected for use (8). 

Figure 6a shows a 2 x 2 Hadamard matrix. 

Hadamard matrices are orthogonal matrices having as elements +1 or 

-1. These matrices have the interesting property that 

X \ 

Hjjk = 20 

A -V 

This property shows how to construct a 2k x 2k matrix given a k x k 

matrix. Figure 6b shows its use upon a 2 x 2 matrix. All Ijk x lik 

Hadamard matrices for k = 1, 2, - - - - 28 are known to exist (8). This 

fact may be used for the construction of systems with non-integer values 

of n. To construct the code using, for example, n = 3 alixlt Hadamard 

matrix and its negative is employed. Each of the eight rows which re­

sults is used as a code symbol for later conversion to an impulse train. 

Figure 7 shows the coding correspondence. All of the remaining code 

symbols are orthogonal to any one particular code symbol with the ex­

ception of one which is strictly negative. It is apparent that as n in­

creases the code symbols will become exponentially longer than the binary 

sequences they represent. In this way more redundancy is added at the 

expense of information rate to decrease the rate of erroneous decision at 

the decoder. 

Through the use of Equation 20, 2x2, lj x lj, 8x8, and 16 x 16 

Hadamard matrices are readily obtained. A 12 x 12 matrix is shown in 

Figure 8 for completeness in low values of matrix order (9). This 12 x 

12 matrix would lead to n =1; .58. 
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(a) 
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+1 +1 -1 -1 
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Figure S» Examples of Hadamard matrices 

Binary sequence Hadamard code syn 

000 +1 +1 +1 +1 

001 +1 -1 +1 -1 

010 +1 +1 -1 -1 

ŒL1 +1 -1 -1 +1. 

100 -1 -1 -1 -1 

101 -1 +1 -1 +1 

110 -1 -1 +1 +1 

111 -1 +1 +1 -1 

Figure 7» Hadamard code for n • 3 
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+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 

+1 -1 +1 -1 +1 +1 +1 -1 -1 -1 +1 -1 

+1 -1 -1 +1 -1 +1 +1 +1 -1 -1 -1 +1 

+1 +1 -1 -1 +1 -1 +1 +1 +1 -1 -1 -1 

+1 -1 +1 -1 -1 +1 -1 +1 +1 +1 -1 -1 

+1 -1 -1 +1 -1 -1 +1 -1 +1 +1 +1 -1 

+1 -1 „-l . -1 +1 -1 -1 +1 -1 +1 +1 +1 

+1 +1 -1 -1 -1 +1 -1 -l +1 -1 +1 +1 

+1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1 +1 

+1 +1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1 

+1 -1 +1 +1 +1 -1 -1 -1 +1 -1 -1 +1 

+1 +1 +1 +1 +1 +1 -1 -1 -1 +1 -1 -1 

Figure 8. 12 x 12 Hadamard Matrix 
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Figure 9 shows an example of s1(t) which would correspond to a typi­

cal binary sequence using the code shown in Figure ?• 

The series of positive and negative impulse functions, designated 

s1(t), is used to drive a linear network. This network has an impulse 

response 

sin 77 (t - 5|i) cos a t 
fi(t) [ux(t) - ux(t - 10n)]. 21 

I (t - 5l0 

This function is sketched in Figure 10 under the assumption that 

The impulse response shown in Equation 21 is perhaps most easily 

realized through the use of a truncated S1̂  X function as given by 

A sin 77 (t - 5\i) 
fi(t) = —-— [ux(t) - UI(t - 10p.)]. 22 

2 (t - 5n) 

This more easily realizable impulse response can then be fed to a 

balanced modulator operating at angular frequency cc>o to obtain fx(t). 

Figure 11 shows a sketch of £x(t). 

C. Derivation of Spectrum Bandwidth 

The impulse response given by Equation 21 represents a finite 

portion of the sampling function discussed in Appendix B. In order to 

ascertain the output spectrum of the encoder, it is necessary to de­

termine the autocorrelation function of s1(t). The Fourier transform of 

the autocorrelation function determines the power density spectrum at the 

input of the linear filter Fx(jco). The function Sz(ja>) is then availa­

ble. It represents the spectrum of the encoder output. 
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Figure 9. An example of s%(t) with corresponding binary sequence 
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Time in units of p, seconds 

Figure 10. Sketch of function given by 
equation 21 
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+1 
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-1 
10 0 

Time in units of p. seconds 

Figure 11. Sketch of f\(t) as given by equation 22 

Figure 12. Autocorrelation function of rectangular pulse of 
width A 
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The limiting autocorrelation function of sx(t) -will be obtained by 

tenporarily letting each unit impulse be replaced by a rectangular pulse 

of width A and height seconds. The function s%(t) thus becomes a 

pseudorandom sequence of finite rectangular pulses each having unit area. 

Equation 20 shows that if a code is devised in the manner prescribed, 

knowledge of the algebraic sign of one code symbol element tells nothing 

about the polarity of any other element, adjacent or otherwise. This 

fact is described by 

Probability |element (i,j) = +11 element (i,k)= +1,j/k^ = i. 

This equation refers to the enlarged 2k x k matrix consisting of a k x k 

Hadamard matrix and its negative. Therefore, the autocorrelation 

function, defined by 

R(T) - L / si(t)si(t +T)dt 2k 
-T 

of the rectangular pulse function is shown in Figure 12. If the limiting 

operation in A is now performed, Equation 2$ will give the autocorre­

lation function. 

ï î . 0 H < T >  -  V T >  2 5  

The Fourier transform of s%(t) is 

CO 

Sz(jto) = / s%(t) exp (-jccrt)dt. 26 
•CO 

The power density spectrum at the input to Fi(jco) is (10) the 

Fourier transform of R(f ). 

|si(j<o)|2 = / Ri(f ) exp (-jtoT )df =1 27 
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The limiting Fourier transform of the unit impulse function Uq( T) 

is given by 

Si(jw) =1. 28 

Consequently, the complex spectrum 

S2(jto) = F3.(jcù)S1(jcù) = Fi(jw). 29 

The function Fi(jco) is obtained by use of Equations 21 and 30. 

09 

Fi(jw) = / fx(t) exp (-jccrt)dt 30 
—00 

Equation 30 may be evaluated by using several properties of Fourier 

transforms. First, change the variable t to 

% = t - 31 

Upon substituting Equation 31 into Equation 30, Fi(jw) becomes 

00 

Fx(jco) = exp (-jSwp") / fi$ + 5n) exp (-jcst)dt. 32 
•00 

The use of Equation 21 in Equation 32 leads to 

Fi(j<o) = eXP / [exp (jat + j5\uùq) 

Tit 
A sin 

+ exp (-jtoQt - jcoo5ii) ] 

~ 

[ui(£ + 5u) - Ux(î - 5p-)] exp (-jw&)dt. 33 

Equation 33 may be simplified through use of the property of Fourier 

transforms given by Equation 3k-

oo 

/ f(t) exp (jcoQt) exp (-jcot)dt = F(j(w - coq)) 

3k 

f f(t) exp (-jcot)dt = F(jto) 
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Consequently, evaluation of the transform of Equation 33 is basically a 

problem of evaluating integral Ii(jto) as defined by 

sin — t 
/

IT y\ . . A 
——£— [ui(t + 5m-) - %i(t - 5ti)] exp (-jccrt)dt. 

-oo E t 
^ 35 

This integral, in turn, is considered to be the transform of a product of 

functions resulting in the use of complex convolution. 

^ V? f Ŝ V̂
X [ Ui(w - v + 2.) - m (to - v - ~)] dv 

36 

The exponential factors found in Equation 33 will not change the 

spectrum magnitude as a function of frequency. The translation property 

expressed by Equation 3U means that the complex function shown in E-

quation 36 is actually centered at frequencies - &Q. If toQ» the two 

complex spectra which are respectively centered at î coq will not signifi­

cantly overlap. Figure 13 shows the plot of the magnitude of the 

spectrum, S2(jœ), which results from Equation 33 « The integral in E-

quation 36 was evaluated through the use of Si(x) tables (ll). 

Figure 13 also shows the spectrum magnitude which is attainable 

using the sampling theory outlined in Appendix B. Apparently the sacri­

fice made by truncating the sampling function at the Î $\i points is not 

large. The second delay imposed to ensure physical realizability does 

not affect the magnitude of the spectrum. 

The output function s2(t) is therefore enclosed by an envelope 

having a fixed amplitude at sample points which are y. seconds apart. In 

the next section, the statistical behavior of the envelope amplitude be-
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tween sample points is studied. 

D. Encoder Output Envelope Amplitude Probability 
Distribution Function 

The impulse response function fi(t) has a total duration of 10p. 

seconds. At any particular instant, the envelope amplitude of s2(t) is 

influenced by the polarity of 10 unit impulses. In the binary case being 

investigated the summation of the contributions of the 10 sample functions 

is purely algebraic. However, the obvious extension of this work to non-

binary phase modulation will require component summation on a vectorial 

basis. 

Suppose that the +1 elements in the 2k x k modified Hadamard matrices 

correspond to sample point phases of + ̂  with respect to sin m_t. In like 

manner, the -1 elements correspond to - ̂  phases at sample points. Since 

these two phases are maximally separated the rate of decoder error will be 

less than for any other phase change equal to less than n radians. How­

ever, this phase separation has the unfortunate effect of causing the 

envelope to vary quite greatly between sample points. Since only 10 unit 

impulses can influence the envelope amplitude at any particular instant, 

it is possible to determine its probability distribution function as a 

function of location between sample points. This study was conducted 

using the random nature of the impulse polarities and the impulse response 

given by Equation 21. The 2^° possible combinations were considered 

equally probable. The 10 impulse functions influencing the amplitude were 

then properly weighted. The results are shown in Figure lU. The proba-
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bility contours represent the probability that the envelope amplitude 

will exceed the relative magnitude shown in terms of A. The value A is 

the sample point envelope amplitude. 

E. Theory of Decoder Operation 

The decoder must base its decisions completely upon the waveform 

y(t). In particular, the decisions made every 2n "V seconds are based 

upon the received signal phase cp at the 2n~"1" sample points corresponding 

2 to a code symbol sent by the encoder. The parameter |3 representing 

signal-to-noise power ratio at the sample points, will strongly influence 

the accuracy with which the decisions can be made. 

The noisy signal waveform, y(t), will have a slowly varying phase 

function since both the signal, s2(t), and noise, (t), are narrowband 

waveforms. This combination is operated upon by the phase detector as 

shown by Figure 5. This detector is assumed responsive to phase only. 

Its transfer function is shown in Figure 1$. This curve represents the 

output voltage or current resulting from an input phase <p in the range 

-n 6 <p < n radians. 

It is, of course, necessary to provide the phase detector with a 

reference signal against which it can determine the sample point phase. 

This detail has been omitted from Figure However, through the use of 

frequency multipliers and phase locked servomechanisms this reference 

signal can be provided. 
n 

Under noise-free conditions (p = <=») the output of the phase de­

tector will be an irregular rectangular pulse waveform. The detector 
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output will be Î 2. at the sample points depending upon transmitted phase 

2 X. At the other extreme, when {3 = 0, the waveform fed out of the de­

tector will be non-gaussian noise whose probability density function is 

P3MX] = 37 

-n -

The waveform at the output of the phase detector will be operated 

upon by the decoding integrator. This device performs the operation of 

cross-correlation in a discrete sense upon the 211 sample points in the 

code symbol being decoded. Actually, 211 such cross-correlators simul­

taneously examine each demodulated waveform. Under noiseless conditions, 

the output of the correlator corresponding to the code symbol actually 

transmitted will be 

Xj_ - 2n~1 %. 38 

In all of the work which follows, this output signal will be designated 

xr 

The output of the correlator corresponding to the negative of the 

actually transmitted code symbol will be called x^. All other corre­

lators corresponding to code symbols orthogonal to x^ and Xg and have 

outputs designated as x^, x^, x^ x^. It will be assumed that 

x^ is the negative of x^, etc. The probability density function at these 

outputs orthogonal to x^ will all be the same as that for x^. 

Obviously the output of x^ is negative to that of x^ even under 

noisy conditions of operation. For the remaining 2n -2 correlators, 

the output signal x^ will, in general, be zero only for noiseless con­
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ditions. This is basically due to the fact that any two orthogonal code 

symbols have as many equal as opposite algebraic signs. (See Figure 7, 

for example.) 

The decoder bases its decision as to which code symbol was most 

probably transmitted upon which of the 2n cross -correlators produces the 

largest positive output signal x. In the next section, equations are de­

rived which describe the probability density functions on these 2n 

correlator outputs. 

F. Decoder Output Probability Density Functions 

The probability density function describing the output of the phase 

detector at a sample point for which the transmitted phase X was ̂  is 

PlMf] - expg(-p2) + P C0SJ|?—-exp^p2 sin2 (9 - £)] 

V2p cos (<p - §) 2 

dt. 39 

-71 ̂  (p <11. 

For the simple case when n = 1 there is only one sample point per 

code symbol. The probability density function describing the output x^ 

is therefore 

(1) , 
P-L ^,-p] = P1[X1||]. ko 

(D 
The corresponding density function Pg [xgjfî] for the output signal 

Xg is exactly the same except that in Equation I4.O is replaced by -x^. 
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Pg [x2s0] = |f] bX 

Through the use of the sampling theory of Appendix B it is known 

that the narrowband noise waveform, o((t), has independent phase values 

at time intervals separated by p, seconds. Therefore, in the case of 

n = 2, the two probability density functions at the two sample points 

correspond to two independent random variables. This permits the density 

function describing their sum to be found by convolution (10). Thus for 

n = 2, the density function for x^ is 

(2) 2n (1) (1) 
P1 [Xj^p] = / P1 [z;p]P^ [x1 - zip]dz. h2 

-2n < 2n. 

(2)  
The function Pg [x^jp] can be obtained from Equation bZ by re­

placing x^ by -Xg. 

The probability density function for x^ when n = 2 must also be ob­

tained by convolution. Here, however, it should be recalled that one of 

the two sample points tends to be + f while the other tends to be -

Therefore, it may be expected that the two orthogonal outputs will have 

zero mean values. The result is 
(2) 2* (1) (1) 

Pj [xyp] s / pi ^3 " z» d̂z* U3 

-2n — x^ 2n. 

For the case of n = 3» four sample points influence the correlator 

outputs. The probability density function for x^ is. 

(3) to (2) (2) 
rl " -f pi - z;p]dz. Ui 
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-Un < Un. 

The function Pp^Xgjp] can be obtained from Equation UU by re­

placing x^ with -Xg. 

The function P^^[xy;p] is obtained by convolution of two previously 

derived probability density functions as shown in Equation b$-

P 3̂'[x^jp] = P^^[z;p]P^^[Xg - zjp]dz U5 

-Un < < Un 

The general formulas are now apparent. 

2n~ln 
pj*)[x,;p] = / pj11"1̂ Czjp]pin_1̂ [x, - zjp]dz. U6 

-2n-ln 

-2n-1n < x1 < 2n~1n. 

P n̂)[x25p] = P-^C-x^p] U7 

2n_1Ti 
P^Cx^p] » / p(n-!)[z.p]p(n_1)[x^ _ z-p]dz. U8 

-2" n 

-2n"1n < x3 < 

These probability density functions will be used in the next section 

to obtain the expressions specifying rate of error committed by the de­

coder due to noise interference. 
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17. ERROR RATE PERFORMANCE OF PROPOSED SYSTEM 

The decoder makes a correct decision as to which code symbol was 

actually sent only if x^ is greater than all other output signals. Obvi­

ously this is impossible if the value of x^ is negative since in that 

event x^ would be positive and therefore greater. 

In the case of n = 1, the probability of correct decoding is 

P 1̂)[p] = / P^[x^;p]dX]y i|6 
o 

For n = 2, recognition must be made of the fact that for correct 

decision to be made x^ must be greater than x^ and x^ as well as Xg. 

This is properly expressed by 

The limits on the inner integral assure that both x_ and x^ are less than 

x^. The lower limit of zero on the outer integral precludes Xg being 

greater than x^. 

When n = 3» three orthogonal code symbol pairs must be considered. 

It is necessary that all of these six outputs be simultaneously less than 

x^. Equation lj.8 shows the relation appropriate to the probability of 

correct decoding in this instance. 

It should be recalled here that all of the other orthogonal outputs have 

the same probability density as x^ and therefore P^Cxyjp] may be used 



www.manaraa.com

Input signal-to-noise ratio p in db 
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instead. 

The general formula for the probability of correct decision when n 

2 bits per code symbol and a signal-to-noise power ratio {3 is used becomes 

2n-1-l 
2n~\ f *i 1 

PCn)[P] * { cb^. Ii9 

n = 1, 2, . 

"The probability of error is designated [§]. 

P n̂)[p] =1 - p£n)[p] 50 

Error rate computations have been made using a digital computer. 

This work was done using 12 values of p over n = 1, 2, 3» U, and 5. 

Figure 16 shows the plotted results. 
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V. CHANNEL EFFICIENCY OF PROPOSED SYSTEM 

The data plotted in Figure 16 makes it possible to compute the rate 

of information flow, (y, through the communication system. .To calculate 

Cx the system will be considered à noisy discrete channel from the 

viewpoint of the binary input and output terminals. 

The transition probabilities are not easily determined, however. 

This difficulty is due to the much greater likelihood of erroneous choice 

of ay . . . . Xgn than of Xg. Since the orthogonal code symbols all have 

zero cross-correlation with the actually transmitted signal, the tran­

sition to xy Xgn will be considered equally likely. Be­

cause of the large negative cross-correlation of the transmitted code 

symbol with its negative, x^ will be considered as having zero probabili­

ty of occurrence except in the case of n = 1. The transition probabili­

ties to orthogonal code symbols will, therefore, be given by 

p (**) fol 
Transition probability E Lp Q 
to Xj, x2n 3 2n-2 

Using the noisy, discrete channel approach (12) leads to a formula 

for C given by 
X 

p(n)rBi 
n + p£n)[0]log2p£n)[{3] + p|n)[p]log2 -5-

cx - 52 

bits per second. 

Figure 17 shows a plot of C^/Cgg. These curves show the relative 

efficiency of this communication system as compared to the ideal Shannon 
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channel. ^ 

Figure 18 shows the ratio C^/Cp^. These curves show the extent to 

which this system approaches what can be done with purely phase modulated 

systems. 

These two curves are discussed in the next section. 
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VI. DISCUSSION AND SUMMARY 

Basically, the data for Figures 17 and 18 are obtained from Figure 16. 

These data could actually be presented in numerous additional ways since 

there are several interrelated variables. For instance, sample point sig­

nal-to-noise ratio bandwidth W, error rate Eg/n̂ [j3], information rate 

Cx, and coding parameter n are variables important in the design of this 

type of communication system. By way of illustration two examples of sys­

tem designs will be discussed. Ih both examples, two systems (system 1 

and system 5) will be discussed. System 1 will use n = 1 while system 5 

will employ n = 5» The first example will show how bandwidth W vs. error 

rate Eg n̂̂ [{3] may be computed while using constant sample point encoder 

amplitude A and constant information rate (y. 

Refer to Figure 16. Note that in order for Eg n̂̂ [p] to be 10~^, {3^ 

must be 10.lt db for n » 1. In order to transmit information at the same 

rate with n = 5* it is necessary to send ̂  times as many sample points 

per second. This means that in order to maintain the same rate of flow 

of information in system 5 it is necessary to increase the bandwidth by 

over what is needed by system 1. However, if we also assume that the 

noise power spectral density is fixed and independent of frequency the 

value of becomes (I0.lt - 5*05) db = 5.35 db for the case of n = 5. Note, 

however, that the error rate is less than 10~ in this case. Consequently, 

in exchange for the use of more bandwidth an improved error rate is ob­

tained. 

For the second example it will be assumed that system 1 and system 5 
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both operate with an error rate of 10 In the case of system 1 the 

p 
value of p must be 9.it db. If the same bandwidth is used for both sys­

tems only as much information is carried by system 5« However, now 

only a vlaue of p = 3.It db is required. Thus a decrease in transmitted 

power of 6 db (it to 1) can be offset by a reduction of information rate 

in the ratio of 16 to while maintaining the same probability of error. 

As a result of these two illustrations it is apparent that some op­

portunity for flexibility does exist. However, Figure 17 shows that as 

the value of p is increased, the efficiency of the channel as given by 

Cx/Cgg decreases steadily. Therefore, to extend the work begun here it is 

logical to work in terms of a larger number of phase positions. For ex­

ample, instead of the binary case considered here where only sample point 

phases of + f radians are allowed, the possibility of four phase positions 

(0, , and IT radians) at the sample points could be considered. Such 

a system would undoubtedly be more efficient at larger values of p. How­

ever, it is also clear that an entire continuum in number of phase positions 

is needed in order to be able to design a good system for any particular 

range of p. Efficient codes for this purpose apparently still await dis­

covery, however. 

Figures 17 and 18 do not show plotted values of channel efficiency 

for low values of p. These curves were arbitrarily discontinued at points 

corresponding to Eg^[p] of .8. For values lower than .8 the transition 

probability to the code symbol opposite from the one actually transmitted 

probably becomes quite important. No computer evaluations were made in 

this regard because of the relative importance of operation under such con­

ditions . 
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Figure U shows the channel capacity of a phase modulation system in 

terms of the familiar Shannon capacity. This curve shows that in the range 

2 of values of {3 near 0 db very efficient phase modulation communication 

systems are possible. The Blachman asymptote for low values of p was con­

firmed by the computer evaluation of Equation 1?. The asymptote predicted 

for high values of J3 also appears to be correct. The approach to the as­

ymptote was much slower than anticipated intuitively. 

Over a limited range of {3, this system is quite efficient in terms of 

Shannon's channel capacity as shown by Figure 17. However, many situations 

arise in which error rate, not channel efficiency, are most desirable. In 

such cases, reference must be made to Figure 16 for comparison of this sys­

tem with others. 

One undesirable characteristic of the binary phase modulation system 

proposed is the power handling capacity required by the output stage of 

the encoder. Figure lit shows that approximately twice sample point ampli­

tude should not seriously overload the encoder power amplifier. Conven­

tional phase modulation systems do not have this problem since their out­

put envelopes do not vaiy with time. The difficulty which arises in this 

binary system is basically due to the algebraic addition of the contribu­

tions of the 10 sampling functions which govern the envelope amplitude at 

any given instant. If, instead, more phase positions at the sample points 

were used, the combination of contributions would be done on the basis of 

vectorial-addition and thus much less likely to produce high envelope 

peaks. 

The initial goal of confining the output spectrum of the decoder has 

been substantially accomplished. The impulse response required by Equation 
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21 may be difficult to synthesize® However, it does appear that the 

spectrum conservation resulting in such an approach might make some ef­

fort in this regard worthwhile. 

Another goal which this system was intended to achieve was simple 

decoder synchronization. Figure 5 shows no provision for this problem 

since it is expected to be a relatively minor problem. Use could be made 

of the 2 cross-correlators already required by the decoder. Several syn­

chronizing systems which depend upon the autocorrelation function being 

maximum with zero displacement would use these cross-correlators to adjust 

the frequency and phase of a stable oscillator at the decoder to properly 

operate the decoder decision device. In contrast, cross-correlation per­

formed on the incoming waveform y (t) would be quite cumbersome since at 

least 2n ̂  phase modulators resembling the encoder would be necessary to 

check the cross correlation with all possible input sequences. 

The extent to which the mathematical model proposed in this paper 

approaches what is physically realizable remains to be determined. It 

appears possible to construct relatively simple devices to meet all system 

requirements, however. 
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VIH. SYMBOL DEFINITIONS 

The mathematical symbol listing given below is not complete. It 

does, however, tabulate the principal ones used. 

A Sample point envelope amplitude of signal 
function. Defined by Equation 10. 

Cpw Capacity of phase modulated channel. Given 
by Equation 17 • 

CgTj Capacity of communication channel using 
Shannon's conditions. Given by Equation 1. 

C Information rate for proposed phase modu-
x lation system. Given by Equation 52. 

F,(jto) Complex transfer function of linear filter 
used in proposed communication system. See 
Equation 30. 

f_(t) Impulse response of linear filter used in 
proposed communication system. Defined by 
Equation 21. 

S A k x k Hadamard matrix. See Equation 20 
and Figure 6. 

H(x) Entropy of variable X. Defined by Equation 2. 

n Number of bits required to select one code 
symbol at the encoder. 

N. Envelope amplitude at the kth sample point in 
the noise waveform of (t). Defined by 
Equation 11. 

p [X] Probability density function of random varia­
ble X. Defined by Equation 12. 

p-j[tp| X] Conditional probability density function of 
variable X given <p. Defined by Equation 13. 

p£n)[p] Probability of correct decoding of code symbol 
carrying n bits with signal-to-noise ratio 
Defined by Equation 1*9. 
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Probability density function at output of jth 
correlator. The code symbol carries n bits 
and the signal-to-noise ratio is {3^. See 
Equations 46, 1*7, and 1*8. 

Autocorrelation function of s, (t). Defined by 
Equation 2l*. 

Impulse train waveform entering linear filter 
of encoder. See Figure 9. 

Complex spectrum at the output of the encoder. 
See Figure 13. 

Time domain waveform at the output of the 
encoder. See Equation 10. 

Time domain waveform at the output of the 
phase detector of the decoder. 

Time in seconds. 

Unit impulse function having infinite positive 
pulse with zero width and unit area occurring 
at t = 0. 

Unit step function having unit magnitude for 
all t > 0 and zero magnitude for all t< 0. 

Output signal of decoding integrator output 
terminals corresponding to code symbol 
actually sent by encoder. 

Output signal of decoding integrator output 
terminals corresponding to opposite of code 
symbol actually sent by encoder. 

Output signal of decoding integrator output 
terminals corresponding to code symbols 
orthogonal to the one actually sent by the 
encoder. 

Bandwidth of narrowband waveforms in cycles 
per second. 

Time domain waveform entering decoder. De­
fined by Equation 19. 

Time domain representation of noise waveform. 
See Equation 11. 
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Sample point signal-to-noise power ratio. See 
Equation lit. 

Phase of encoder output. 

Time interval between unit impulses in s,(t). 
See Figure 9. 

2 2cr is mean square value of N^. 

Ihase of narrowband waveform y(t) at decoder 
input. 

Mean angular frequency of the band W cycles 
per second wide occupied by narrowband 
waveforms. 
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X. APPENDIX A 

This appendix develops the probability density function of the re­

sultant phase due to the linear addition of a sine wave and narrowband, 

gaussian, white noise. This development follows closely that of Bennett 

(6). 

Let <x(t) be a representative wave of narrowband noise centered at 

radian frequency COQ. 

<X(t) = a(t). cos toQt - b(t) sin £0Qt A1 

The functions a(t) and b(t) are functions of time varying slowly 

relative to oscillations at radian frequency CÛq. A cosine wave Acos©Qt 

is added-to °<.(t). The envelope function e(t) is therefore given by 

e(t) = \J[ a(t) + A]2 + b2(t). A2 

The phase function is designated by 

<p(t) - tan"1 A. A3 

Consequently, expressions representing the sum of the cosine and noise 

waves can be written in the forms shown in Equation Ah-
Acos<aQt + of (t) = e(t)cos[coQt + <p(t)] 

= e(t) [a(eit) A OOMot " Ml} Bfa»o*| 

= e(t)[cos<pcostoQ(t) - sin<psin£oQt] 

= e(t)cos(toQt + <p) Alt' 

It is shown by Bice (13) that a(t) and b(t) are independent gaussian 

random variables. However, the proof of this fact is too lengthy to in­

clude here. Because a(t) and b(t) are independent gaussian variables, 
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their joint probability density function may be written as 

Pp[a(t),b(t)] = —~~2 exp "a "b . A$ 
d 2na 2a 

hi order to change this probability density function to the (<p,e) coordi­

nate system the respective two dimensional integrals must both be equal 

to unity. This is properly accomplished by letting 

dadb = ededtp. A6 

Change of variables to e and q> therefore leads to 

P,[=(t),»(t)J -SMexp - eV^àeoosi _ A7 

3 2na 2c2 

Equation A7 gives the joint probability density function of the narrowband 

noise and cosine wave in terras of the envelope function e(t) and the phase 

function <p(t). In order to obtain the probability density function of the 

phase q>(t) an integration over the possible range of the envelope function 

is made. 

Pn [<p] = f. P,[e(t), <p(t)]de 
x 0 ^ 

CO 

1 f - «2 * A2 - 2Aecos<p ^ a8 

2-jtct2 "0 2a' 

The integral shown in Equation AÔ may be evaluated by completing the 

square in the exponent. The resulting expression is 

2 V2j3cos<p 

Pit»] - SEizll + expt-p^ln2») ̂  i exp - §- dt . 

•00 

A9 • 
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In Equation A9 

p2 = A10 
2a 

Equation A9 is based upon the wave Acosa>Qt having zero phase. If, 

instead, it had a phase angle X the conditional probability density 

function is expressed as 

PjWIM - expt-|32sin2(,>-X)] 

V5pcos (<p-X) 2 

j exp - dt = p1[X|q>]. All 
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• XI. APPENDIX B 

This appendix is a brief summary of the theory of uniform sampling 

for narrowband, waveforms. As in Appendix A, slowly varying envelope and 

phase functions are assumed. A real narrowband signal s^(t) is centered 

in a narrow band having a bandwidth of 2nW radians per second and center 

frequency coQ radians per second. 

sr(t) » A(t)cos[coot + \(t)] El 

At this point it is desired to obtain a Fourier series expansion of 

the complex spectrum S^(jw) related to s^(t). However, this is not 

easily done since the positive and negative frequency bands are not ad­

jacent as would be the case if the frequency band began at zero frequency. 

To circumvent this difficulty, a complex signal s^(t) is defined. 

8c(t) = sr(t) - js.(t) B2 

The real part of s^(t) is s^(t). The imaginary part, however, is chosen 

in just such a way that the negative frequency band of sc(t) disappears 

(12). 

Fourier transform pairs will be used for determining the complex 

spectrum. The various time functions are assumed to satisfy the Dirichlet 

CO 

sr(t) = îfi | Sr(jco)exp(j6ct)d« 
-co 

B3 
CO 

s (j<o) » / s (t)exp(-jcat)dt 
«.CO 

conditions in order to make them transformable. 

The Fourier transform of Equation B2 is 
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ScOco) - Sr(j(ù) - jS^(jto). Bli 

In order to eliminate the negative frequency band it is necessary 

that 

S±(j©) « jSp(jw), co>0  ̂

= -jSr(jto), to < 0. 

Sg(jto) may now be expanded in a Fourier series in the angular 

frequency range - nW ̂  to — œQ + nW. In Equation B6 the negative sign 

CO 

Sc(jto) = ckexp [-j B6 

which has been included in the exponent for later convenience can be ac­

counted for by proper adjustment of the usual definition of c^. The last 

toQ+nW 

Ck" / m Sc(^)e^ L^]^ = sc (I) I 57 

co —TtW o 

equality of Equation B7 is obtained by means of Equation B3« The complex 

time function s^(t) may therefore be expressed by 

<»o+riW 

sc(t)"SÏÎ f f kZ. s (§) exp [-j B8 
CO -71W V J , 
O 

Goldman (12) shows by several successive manipulations that Equation B9 

is a consequence of Equation BÔ. 

s (t) . JL f Si" l"W(t " ̂  C°° ̂ °(t ' g' ' ̂ B9 

r k=-=° ïlW(t - g) 

Equation B9 demonstrates that a narrowband signal is completely 
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specified by two numbers (A^ and 7^) at the kth sample point. Sample 

points are regularly spaced by ̂  seconds. Ak determines the magnitude of 

the S1̂  x envelope function centered at the kth sample point. The enve­

lope function is equal to zero at all other sample points. The value of 

7^ determines the carrier phase at the kth sample point. 
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